If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+15X=24
We move all terms to the left:
X^2+15X-(24)=0
a = 1; b = 15; c = -24;
Δ = b2-4ac
Δ = 152-4·1·(-24)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{321}}{2*1}=\frac{-15-\sqrt{321}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{321}}{2*1}=\frac{-15+\sqrt{321}}{2} $
| B=-18+n | | 50+5x=-(3x+6) | | 3x-38=7x-59 | | 5/2x+1/2x=2x+35/2+9/2x | | 4(2w-1)=20(w-5) | | 3x–4=–10 | | 4y-6+y+50=7y+50-5y | | 79=7x-2(-x-17) | | -8=12=q | | 3+4x=3x-6 | | -4(-2m-7)+6m=2(7m+14) | | 7+5y-2=7y+26-5y | | -3x+6(-4x+2)=228 | | 7/8y-3/8=15/4 | | 3=-5.7x | | 132=5x+3(-6x-8) | | (3^x)*11=3 | | –5p–2=12–2(p–1) | | 6=-1-n | | 3m+5m-9=25 | | 2x-5(5x+14)=45 | | 5(5x+1)=-3(2x-2)+4x | | (3^(x+1))+8*3^x=3 | | 9y-4=y+7 | | 35-×/2=x/5 | | x-1=7x-3 | | 3^x=3/11 | | 75=-2x+3(x+22) | | 7v(4v^2)= | | 5m-8+6m=25 | | 30=-30n-14-26 | | 2m-7=-7-8m-m |